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J. Phys. A: Math. Gen. 15 (1982) 3273-3283. Printed in Great Britain 

Scale-covariant field theories: IV. Stability 

J M Ebbutt and R J Rivers 
Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 ZBZ, England 

Received 22 February 1982 

Abstract. At a ‘semiclassical’ level changing from translation-invariant to scale-covariant 
measures introduces the likelihood of instability. We present two mechanisms whereby, 
because of the quantum effects, instability is avoided. 

1. Introduction 

Scale-covariant field theories have been proposed by Klauder (1979a, b, 1981, and 
references therein) as a solution to the problem of non-renormalisability. 

For simplicity let us restrict ourselves to the theory of a single scalar field. The 
generating functionals that have to be evaluated are (for a Euclidean theory) formally 
written as 

Z ’ [ h I = j  9‘[rplexP-;(A[rpl-( hrp) (1.1) 

where A[rp] is the classical action 

and 9’[rp] is the scale-covariant measure satisfying (Klauder 1981) 

9’[A(P 1 = F[AIWrp  1 for all A, A ( x )  > 0 ,  Vx. (1.3) 
In the previous two papers of this series (Ebbutt and Rivers 1982a, b, to be referred 

to as I1 and 111, respectively) we have either (i) worked with the scale-covariant 
branching equations for the connected Green functions implied by Z’ (as in 11), or 
(ii) worked with the augmented formalism, in which (for F = 1) the scale-invariant 
measure 9’[rp] is re-expressed in terms of translation-invariant measures 9[rp], 9[x] 
as 

9’[491= 9[40]9a[Xl exP -$ dx Q2X2 (1.4) 

(with suitable normalisation). That is, in terms of the more convenient translation- 
invariant measures, the action A[rp] is replaced by 

(1.5) 

The consequences of this were discussed in 111. 
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3274 J M  Ebbutt and R J Rivers 

In both approaches we have circumvented the fact that the scale-covariant measure 
5 B a ’ [ c p ]  is very singular. This is seen by writing 9’[cp] formally as 

That is, for a given field configuration c p ( x ) ,  9‘ diverges 
(1.4), we were to write? (formally) 

9’[cp] = 9 [ q ]  exp 

(1.6) 

at its zeros. If, instead of 

(1.7) 

we see that, in terms of translationally invariant measures, we have replaced the 
potential V(cp) in (1.2) by 

~ ‘ ( p )  = ~ ( p )  +$ph8(0)  In c p 2 .  (1.8) 

As cp + 0, the additional ‘potential’ &3StS(O) In cp2  becomes unbounded below (assuming 
some regularisation procedure). This suggests that the change of measure may make 
the theory intrinsically unstable. If this were the case it would invalidate the whole 
idea of scale covariance, and the possibility deserves to be considered seriously. 

In this paper we shall argue that this unboundedness of the modified classical 
potential is not necessarily reflected in the more appropriate effective potential of the 
theory. To see this it is sufficient to examine the pseudo-free scalar theory in which 
A[p] describes a free field as 

To demonstrate stability it is necessary to avoid h expansions. Two approaches 
suggest themselves. As a first indication of how instability can be avoided we shall 
examine the large-N limit of the O ( N ) -  invariant pseudo-free theory, obtained by 
generalising (1.9) to N fields cpoi ( i  = 1,2,  . , . , N )  (in the vector representation). As 
a second indication of how quantum effects can restore stability we adopt what is 
essentially a ‘strong-coupling’ expansion for a single pseudo-free scalar field, in which 
we expand in kinetic terms about the pseudo-free independent-value model (IVM) 
(Klauder 1975) with action 

Ao[cp] = t / dx m h 2 .  (1.10) 

This discussion of the Euclidean pseudo-free theory is the content of the next two 
sections. The lower boundedness of the Euclidean effective action that each implies 
is encouraging. However, the interpretation of the effective potential as an energy 
density is only strictly correct for the Minkowski theory, and this is the content of the 
third section of the paper. 

The concluding section summarises our results. 

f This can be made well defined (Kotecky and Preiss 1978) for the independent-value model in which the 
kinetic term is dropped and for which /3 = 1. 
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2. The large-N limit of the pseudo-free effective potential 

The expression (1.8) for the modified classical potential is not, in itself, proof of 
instability of the scalar theory. Rather, we need to calculate the effective potential 
V(p), the constant field density of the effective action r[p] (the generating functional 
of one cp irreducible Green functions). 

In general, we do not know how to compute V. An expansion in h is clearly 
inappropriate. However, we have seen in I11 that a diagrammatic expansion of the 
‘hard-core’ effect of the change of action, when expressed as in (1.5), leads naturally 
to a retention of the most singular diagrams. This occurs automatically in 1/N or 
mean-field expansions, and it is such an expansion that we shall consider here. 

Consider the O(N) -  invariant scale-covariant pseudo-free Euclidean theory of the 
scalar fields pi (i = 1 , 2 ,  . . . , N) with generating functional 

We require that 9’[p] be covariant under both O ( N )  rotations and under local 
OW)-invariant scale transformations i.e. 

9 ’[AV 1 = F[A19  ’[v 1 for all A, A ( x )  > 0, Vx. (2.2) 

In terms of the O(N)-invariant translation-invariant measure 9[p] = IIr”9[pi] we 
can formally write (up to normalisation) 

whence 

Z’[h] = fl 9[pi] exp - 

displaying the suspect In p2 term. 

q2 = O(N) .  To make this N dependence explicit we rewrite 2’ as 

dx[$(Vq)* + $m;p’ + $phN6(0) In N-’p2 - h 0 p] (2.4) 
1 

We expect the path integral to be dominated by those configurations for which 

z ’ [~I=  I f l ~ [ p i l 9 [ a l [ ~ i p 2 - ~ ~ ) l  1 

xexp -- dx[$(Vpp)*+$m~p2+$PNhS(O) In N - ’ p 2 - h  p] 
h ‘I  

x exp - - dx[$(Vq)2+$m&2 +sa ((p2 - Ab) +i@NhS(O) In - h  * 491. 

(2.5) 
h ‘I 

The Gaussian p integrals can now be performed to give 
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where 

h * (-V2+m:+ia)-'h+$N (ph8(G)lna- iao)  I 
+$NhTr  ln(-V2+m; + ia ) .  (2.7) 

Each term in (2.7) is O ( N ) .  In the limit N + c o  ( h  fixed) we assume that the path 
integral Z' [h]  is dominated by a single A dependent saddle point, given by the minimum 
of M. 

In computing the effective potential 'V(cp) it is sufficient to take h to be a constunt 
uector. If R denotes d-dimensional Euclidean space-time volume, we can write (for 
such h )  

n R 
h h Z' (h)  =exp -- W ( h )  = C exp - -u (h)  (2.8) 

where u ( h )  is obtained from (constant a, a )  

u ( a , a ; h ) =  - i ( m i + i a )  h +$N(phS(O)Ina- iaa)  -1 2 

on evaluating it at 

(2.10) 

As before, v is O(N)  and C, the determinant of fluctuations about the extremum 
(2.10), has In C of O(1). 

The Euclidean effective potential V ( q )  is the Legendre transform of W ( h )  and 
hence, in the large-N limit, of v ( h ) .  

Two steps simplify the evaluation of clr(cp) .  Firstly, we choose 
2 2  m = mo + i a  

as a more convenient variable than a. Secondly, as an intermediate step, we introduce 
V(m2, a ;  c p ) ,  the Legendre transform of u ( m 2 ,  a ;  c p ) .  That is, defining cp by 

au 2 

ahi 
fpI = -- (m , a ;  h )  =L m-2hi  (2.11) 

we construct 

V(m2, a;  c p )  = v ( m 2 ,  a ;  h(cp))+cp h ( q )  (2.12) 

=$n2cp2+i/3NhS(0) In a - i N ( m 2 - m i ) ~ + $ N h  dk  ln(k2+m2) (2.13) I 
where dk = ( 2 ~ ) - ~  ddk (in d space-time dimensions). 

The effective potential V ( p )  is now obtained by imposing the constraint equations 

(2.14) 
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(2.15) 
U = Lr(& 

Equations (2.14) and (2.15) are identical to (2.10), on making the substitution (2.11). 
We see that if we were to set It  = 0 in (2.14) and (2.15) we would have m = mg, 

U = N - ‘ q 2 ,  whence 

(2.16) 

We shall show that the quantum effects ( I t  # 0) in (2.14) and (2.15) are sufficient 

The global extremum of V(4p) occurs at 

o = a Y / a p i  = m2pi 

V(4p) = fm&2+f/3NItS(0) In N - l q 2 .  

This is the disastrous potential of (1.8) that we wish to avoid. 

to avert the danger. 

(2.17) 

i.e. p = O .  At q = 0 it follows, from (2.14) and (2.15), that 

(2.18) 

(2.19) 

Equation (2.19) was discussed extensively in I11 for p = 1, where it was shown that 
it could only be expressed in terms of finite quantities for d 3 4 space-time dimensions. 
This is equally true for all p > 0. 

As in I11 we introduce a momentum cut-off l k l < A .  For simplicity we restrict 
ourselves to d > 4 dimensions?. 

Let us develop V ( m 2 ,  U ;  cp) as an expansion in ( p 2 ,  

f i2=m2(p2)--m2(o)  6 =u((p2)-u(O). (2.20) 

This gives (up to a constant) 

Y ( m 2 ,  U ;  cp) = : m 2 ( ~ ) c p 2 + ~ f i 2 c p 2 - ~ ~ ~ ~ s ( ~ ) c r ( ~ ) - 2 c i 2 - : f i 2 d :  

-t higher-order terms. 
dk _- 

N A ( f i 2 ) 2  4 J (k2+m*(o)) (2.21) 

Expressed in powers of ‘4, the coefficients of the higher-order terms get progressively 
less singular. 

On imposing the constraints (2.19) and (2.20) we find that in terms of 

(2.22) 

we have 

(2.23) 

t The case d = 4 will be considered elsewhere. It is sufficient for our purposes here to demonstrate that 
stability can he preserved in principle. 
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Again, expressed in powers of A the first terms in (2.23) and (2.24) are the most 
singular. With 

S(0) = O(Ad)  ~ ( 0 )  = O(A“’) ~ ( ~ ~ ( 0 ) )  = o ( A ~ - ~ )  (2.25) 
we see that 

Taking the terms in V in (2.22) in order, this gives 

(2.26) 

The higher-order terms omittea are down by additional powers of A. Thus, in the 
limit A + 03 for d > 4 dimensions only the first term in (2.22) survives to give 

V ( 8 )  = tm’(o)(o* (2.28) 

where m’(0) satisfies (2.20). 
That is, in the large-N limit the pseudo-free theory is in fact a (stable) free theory 

in d > 4 dimensions. 
The mechanism that has brought about this stability is that the large-N limit 

resums the diagrams associated with the ‘hard-core’ change of measure in such a 
way that their contribution vanishes on removing the A cut-off, provided the individual 
terms are sufficiently singular. 

The fact that the large-N limit of the pseudo-free theory is a stable free theory 
does not mean that, in general, it is so. The non-leading terms in a 1/N expansion 
will provide non-free corrections. However, our empirical experience of 1 / N  
expansions suggests that such pathologies as they possess are present at leading order. 
We do not expect non-leading orders to reintroduce instability, particularly as the 
singularity of the measure was a leading-order effect. At the moment the systematic 
development of the 1/N expansion is under active study and we shall report on it 
elsewhere. Similarly, as we have already mentioned, we do not expect the inclusion 
of self-interactions to alter the stabilityt. 

We think that this approach is the most promising way to solve for scale-covariant 
theories. However, our understanding of scale-covariant theories is still sufficiently 
poor that all avenues should be explored. All that is clear is that h expansions are 
inappropriate and, in consequence, any non-perturbative (in h )  approach of canonical 
theory may have some use in scale-covariant theory. 

3. Expansion in kinetic terms 

Let us revert to the theory of a single pseudo-free scalar field. Because the effective 
potential V(q)  only depends on constant field strengths, kinetic terms are absent in 

t This particular aspect of stability will be pursued in paper V in this series (Ebbutt and Rivers 1982c), 
where we examine the large-A’ limit of the O ( N )  self-interacting scale-covariant A (q2)2 theory. 
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the first instance?. This suggests that an alternative approach may be to develop a 
power series in the kinetic terms about the theory with kinetic-free action 

The independent-value model (IVM) with action A .  is exactly, and non-trivially, 
solvable (Klauder 1975, 1979a, b). In particular, it requires a scale-invariant measure 
p = 1. 

At one extreme it has been argued (Kovesi-Domokos 1976) that such a ‘strong- 
coupling’ expansion (or, more appropriately, a large m2 expansion) gives rise to a 
semiclassical theory of tree diagrams, with the vertices and mass terms of the IVM. If 
this were true it would mean that the Euclidean effective potential Y(q) for the theory 
would be just that obtained from the IVM, and it is this that we shall now calculate. 

As we saw in 11, the IVM does not permit any mass renormalisation like (2.20). 
Rather, the scale covariance forces a multiplicative renormalisation of the form 

m2 = b-’a(O)m; (3.2) 

where b, with dimension [MassId, is an arbitrary mass scale. 
Let 26 [j] be the generating functional for the IVM, 

whose effective potential we wish to calculate. As before, we need only consider 
constant j ,  whence 

n 
A 

Z A  [ j] = exp - - WA ( j )  

where (Klauder 1975) 

Wb(j)= -abh  lo~~[cosh(ujicl)-l1expA)-~~exp - (bm2u2/2h).  

(3.4) 

(3.5) 

The coefficient ab is an undetermined scale factor (see 11) and, for convenience, we 
set a = 1. 

The Euclidean effective potential Y(q)  is the Legendre transform of W ( j ) .  We 
define 

m a wb 
ai 

cp = --= b lo du sinh(uj/h) exp -(bm2u2/2h) 

where @ is the error function. We then have 

W,) = Wb(i(q))+cpi(cp) 

WP) = j * j ( rF?  0 d q ’ .  

whence 

t Of course, in any expansion scheme the kinetic terms wil! determine the form of the loop contributions. 
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From the monotonicity of cp(j) it follows that Y ( q )  is bounded below by zero. That 
is, the Euclidean effective potential shows no signal for instability. 

We can say more. The scale is set by the quantity bh/m2. For p2<< b h / m 2  we have 

Y(cp) = t m 2 q 2 + m 4 q 4 / 1 2 b h + O ( p 6 / ( b h ) 2 ) .  

But for c p 2  >> bZ2/m2, 

(3.9) 

Thus, as bh/m2 -+ we recover the free theory. This can be interpreted in two ways. 
On the one hand, it says that at mass scales that are small compared with b we cannot 
distinguish the pseudo-free from the free theory. This was noticed in (Klauder 
1979a, b), but it has been stated (Nouri-Moghadam and Yoshimura 1978) that this 
is a particular example of a more general property of scale covariance. That is, that 
scale-covariant theories possess mass scales below which they behave like canonical 
theories. This may be relevant to theories of grand unification, which naturally give 
rise to large mass scales. The above comments suggest that in some sense, it does 
not matter whether the theory is renormalisable or not, provided we are at energies 
well below these scales. 

Alternatively we could interpret b h  large as a high-temperature limit for the 
theory?. 

Of course, all the above presupposes that the effective potential Y(p) for the IVM 

is indeed the effective potential of the whole theory, which would only be true if the 
analytic regularisation procedure of Kovesi-Domokos (1976) was exact. We do not 
believe this to be the caset. Rather, we expect something more complicated to be at 
work (e.g. see Caianiello et a1 (1978), Bender et a1 (1980) for discussions of strong- 
coupling expansions). Nonetheless, treating Kovesi-Domokos (1976) as an approxi- 
mation it certainly describes part of the picture, and perhaps a significant part at high 
temperatures, for example. 

We have primarily introduced this approximate ‘strong-coupling’ calculation to 
demonstrate that more than one mechanism exists to preserve stability in scale- 
covariant theories. In this case it is that the operator-product expansion implicit in 
the scale-covariant formalism essentially expresses W’( j )  rather than Z ’ ( j ) 3  in terms 
of exponential integrals with singular measures. In consequence the semiclassical field 
cp[j] has a very different behaviour with respect to j from that of a canonical theory. 
Unfortunately, it is not possible to relate this to the large-N limit of the previous 
section because the large-N limit of the O(N)-invariant IVM is somewhat pathological 
(Klauder and Narnhoffer 1976)O. 

V(cp)-qd2bhm2[1n p ( 2 m 2 / ~ b h )  1/2  I 1/2 . 

4. The Minkowski theory 

So far we have restricted ourselves to the Euclidean pseudo-free theory. We have 
construed the lower boundedness of the Euclidean effective potential V ( q )  as a signal 
for the stability of the theory. This is not strictly true, since it is only for the Minkowski 
theory that the effective potential has the interpretation of an energy density (see, for 
example, Coleman 1975). 
+ Both these interpretations are very unlike the large-N limit of the previous section. 
$ The fact that our conclusions are dimension independent makes us suspicious. 
0 This will become clearer in paper V. 
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For the large-N limit of the O(N)-invariant pseudo-free theory there is no difficulty 
in performing the analytic continuation from the Minkowski to the Euclidean theory. 
The Minkowski effective potential is still ( d  >4) 

“I~(vP) = bm 2 ( ~ ) $  (4.1) 

where m2(0) is given by (2.19). 
For the expansion about the IVM the situation is different. If the Euclidean tree 

diagrams are all that survive, continuation is trivial and nothing changes. However, 
we have already observed that the over regularisation of Kovesi-Domokos (1976) is 
too extreme. This is reflected in the fact that other continuations are possible with 
this regularisation that lead to different conclusions. Without giving them any par- 
ticular credence, it is worthwhile summarising them briefly. 

For example, we might wish to begin with the overtly Minkowski IVM generating 
functional 

Zg[ j ]= (4.2) I 
This gives (for constant j )  

Z6 ( j )  = exp i n  W6 ( j ) / h  (4.3) 
with 

W6(j)=ibhIom$(l-cos uj/h)exp -(ibm2u2/2h). (4.4) 

The most immediate consequence of (4.4) is that 

cp = a W;(/aj (4.5) 

CP’O as j + O  and j-,oO. (4.6) 

is no longer single valued (in magnitude at least), with 

However, on inspection we see that real cp requires complex j (and vice versa) 
whence V(9 )  is also complex. It might be argued that this complexity should be 
understood as a measure of the instability of the vacuum (with decay rate proportional 
to Im V ) .  Rather, we interpret it as an overt failure of the regularisation of Kovesi- 
Domokos (1976). 

Nonetheless, this suggests an alternative continuation in which we commence with 
the Euclidean IVM for which 

Z r [ j ] =  9’[cp]exp -- dx[$micp2-ijcp] (4.7) h ‘I 
and continue afterwards. This differs from (3.2) in the replacement of j by i j  and is, 
in fact, the form used in paper 11. On taking j constant we have 

(4.8) Z r  ( j )  = exp -a W c  ( j ) / h  
where 

W r  ( j )  = bh jOm f l l  -cos uj/h)  exp - (bm2u2/2h).  (4.9) 
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The semiclassical constant field cp = aWr/dj is expressible in terms of confluent 
hypergeometric functions as 

hbj 
m Q =-- iM(1 ,$; - j2 /2bhm2) .  (4.10) 

As in the original Euclidean example, ‘p is real but, as in the Minkowski example 
above, is double valued. In consequence the effective potential is double branched. 
In the vicinity of Q = 0 the upper branch Vu(cp) is as the Euclidean potential V(cp) 
of (3.8). 

However, on the lower branch ( j  --f CO) 

j - bhcp-’ (4.11) 

whence 

Vl(cp)-$bh In Q* (4.12) 

for small Q. That is, the disturbing logarithmic singularity (in regularised form, with 
S(0) replaced by 6)  has reappeared on the lower branch. As bh+ CO the two branches 
decouple, but for bh finite they could communicate via instantons if the regularisation 
(Kovesi-Domokos 1976) were exact. 

Effective potentials with more than one branch are not unknownt. However, once 
instantons cease to be driven by the classical kinetic terms (of purely tree diagrams) 
tunnelling is no longer inevitable (Cant 1979). It is likely that a more correct 
regularisation would show this. Alternatively, a phase transition could exist below 
which the lower branch decoupled or vanished. 

Given the supporting evidence of the large-N limit we are satisfied to see that the 
operator-product expansion of the scale-covariant formalism is able, in principle, to 
provide a mechanism for stability. We are unable to pursue this ‘strong-coupling’ 
approach any further at the moment. 

5. Conclusion 

We have presented two mechanisms for preserving the stability of scale-covariant 
scalar theories, despite the presence of In Q’ terms in the ‘classical’ potential induced 
by the change of measure. 

Firstly, we can resum the diagrams due to the ‘hard-core’ effect of the change of 
measure as in the large-N limit of the O(N)-invariant theory (or equivalently, perform 
a mean-field expansion). For the pseudo-free theory we have seen that, on removing 
the momentum-space cut-off, the hard-core effects vanish in the large-N limit for 
d > 4 dimensions. This dimension-specific result is encouraging, since for d > 4 
dimensions the scale-covariant formalism is forced upon us. Stability is thus restored 
to leading order. While not proving stability, this makes it much more probable. 

Alternatively, we have examined a ‘strong-coupling’ series expansion in kinetic 
terms about the independent-value model in an approximation in which only tree 
diagrams survive. The operator-product expansion implied by the scale covariance 
essentially forces W (the generating functional for connected Green functions) to play 

+ For example, the double-branched effective potential of the large-N theory has a real part which is 
unbounded below (see Cant 1979). 
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the role that 2 (the generating functional for unconnected Green functions) plays in 
canonical theories. In this way the effective potential acquires a lower bound (for the 
Euclidean theory). 

In this latter case there is some ambiguity in continuation from the Euclidean to 
the Minkowski theory but stability can be preserved. 

We conclude that, as yet, there is no problem with the stability of scale-covariant 
theories. The next step is to examine non-leading terms in the 1 / N  expansion of the 
O ( N )  scalar theory. This will be reported elsewhere. 

Note added in Proof. In our analysis of the stability of the large-N O(N)-invariant pseudo-free theory in 
J 2, we assumed that, on imposing ultraviolet regularisation Ikl SA, the expression 

is O(Ao). This.is true for general values of & but if is chosen carefully it can vanish as A + CO. Equations 
(2.23)-(2.27) then cease to be valid. Nonetheless, although different, if we calculate V(cp”) in the vicinity 
of cp2 = 0 we still have no instability. However, although our conclusions about instability are unaltered, 
the way in which stability is restored is changed. For these particular values of P the large-N limit is no 
longer that of a free theory. The consequences of this will be discussed elsewhere by one of us (RJR). 
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